

NIR-sensitive single-photon devices (SiPM and SPADs in custom technologies), for industrial and automotive LIDAR applications

Fabio Acerbi, G. Paternoster, A. Mazzi, A. Gola, L. Ferrario

Centre for material and Microsystem Fondazione Bruno Kessler (FBK), Italy

acerbi@fbk.eu

September 14-18, 2020

Outline

- □ Introduction on FBK research topics
- □ Single photon avalanche diodes (SPADs) and Silicon photomultipliers (SiPMs)
 - SiPM characteristics and typical applications
 - FBK SiPM technologies roadmap: "High-density" and "ultra high density" tech.
- Emerging applications for SiPMs
 - NIR spectroscopy and diffuse optics
 - LiDAR (automotive and industrial): requirements, working principle
- □ NIR-sensitivie SiPM technology optimization
 - Issues and requirements
 - Current development and performance
- □ IPCEI at FBK: roadmap and plans for future NIR tech. with 3D integration
 - TSVs on front-illuminated 3D integrated structures
 - Back side illuminated, with charge-drift engineered future NIR SiPM for LiDAR

Fondazione Bruno Kessler

Fondazione Bruno Kessler

SOCIETY

Silicon-based detector in full-custom technologies:

4

development for LiDAR

SPADs and SiPMs

SPAD: Single-Photon Avalanche Diode

(Geiger-mode, single photon counting capabilities). Available in:

- Full-Custom Technology
- CMOS Technology

❑ SiPM: Silicon photomultiplier → thousands of SPADs in parallel

(single detector, single-photon sensitive, but with photon counting capability) Available in:

- Full-Custom Technology
- Digital SiPM d-SiPM (CMOS)

Silicon Photomultipliers (1)

- Silicon photomultipliers: Thousands of cells in parallel
- But still single-photon sensitive
- High detection efficiency (PDE), up to 50-60%
- Very good time resolution (better than 100ps)
- High linearity and photon-number resolution

Silicon Photomultipliers (2)

a SiPM is:

Radiation detector (with <u>scintillator</u>)

- Medical imaging
- High-energy physics

Substitute of PMT (photomultiplier tube)

- Spectroscopy
- Calorimetry

Single-photon detector (with photon number resolution)

- Single-photon spectroscopy
- LiDAR

FBK: SiPM tech. roadmap

Fabio Acerbi - NIR SiPMs and SPADs development for LiDAR 8 of 70

"High-density" technology

- $\Box \quad \text{Trenches between cells} \rightarrow \text{Lower Cross-Talk}$
- □ Cell pitch: 15 50 um
- □ Narrow dead border region \rightarrow High Fill Factor (>80%)
- □ "simple" fabrication process: 9 lithographic steps

< 3 um

"Ultra-high-density"

- Reduction of all technological features, including trenches width and contacts.
- □ Circular active area in honeycomb SPAD configuration.
- □ High fill-factor despite the small pitch
 - \Box (down to 5µm, with 40% nominal FF !)

SiPM new application: diffuse optical spectroscopy

Source: Re et. al. "Probe-hosted silicon photomultipliers for time-domain functional near-infrared spectroscopy ..."

Source: R. Zimmermann, et. Al. "Silicon photomultipliers for improved detection of low light levels in miniature nearinfrared spectroscopy instruments ..."

- □ Applications: near-infrared spectroscopy / time-domain diffuse optics
- □ SiPMs have been a "revolution" thanks to their
 - Large active area, (large numerical aperture in light collection)
 - But still with single-photon sensitivity, high detection efficiency and good time resolution.

SiPM new application: LiDAR

- Requirements: detect up to 200m.
- Detectors requirements:
 - High-sensitivity
 - Good time resolution
 - High dynamic range
 - Small dead-time
- SiPMs are a promising choice
- □ 905÷950 laser → need optimized SiPM technology

- Example: collision protec. on automated vehicles
- □ Requirements:
 - Smaller range
 - But high precision
 - Large field of view
- Reliable and compact system
- SiPMs, APDs, ... are promising choices

Automotive LiDAR

SiPM for Near Infrared (1)

- Red and NIR photons \rightarrow longer absorption depth in silicon (tens of micrometers)
- Thicker epi-Silicon must be used to increase absorption
- Technology adjustment:
 - thicker trenches (high aspect ratio)
 - Electric field modification to collect deeper in epi-layer

SiPM for Near Infrared (2)

- □ Issue: the "border effect"
- \Box When increasing epi-layer thickness \rightarrow more important border effect
- □ Important reduction of effective active area (with respect to nominal AA)
 - It needs a modification of the internal SPAD structure to get high detection efficiency

SiPM for Near Infrared (3)

- □ Applications like LIDAR need:
 - Small cells \rightarrow fast recharge, to cope with background light
 - but with high PDE
 - Not possible, because of border effect
- New strategies and technological improvements are needed

Strategies:

Small cells but with improved sensitivity

> Big cells but with reduced CT

Medium cells / small AA - with back reflector - with *micro-lens* (improved sensitivity)

Back-side illuminated cells with charge-drift engineering (improved sensitivity)

SiPM for Near Infrared (4)

1.4E+6

- NIR-HD tech: current developments status
 - Detection efficiency: $\sim 12\%$ (25µm SPAD pitch), \sim 14% (54µm* SPAD pitch)
 - Dark count rate (DCR): ~800kcps/mm² \rightarrow 500cps per SPAD
 - Crosstalk: ~10% (for both 25µm and 54µm pitch)

11%

12%

5%

13%

14%

15%

NIR SiPM array

Over 4000 device tested over the wafer

- 8÷16 elements.
- Small cell pitch (25µm) for reducing saturation issues.
- Fast single-SPAD recharge time.
- Good uniformity in performance is needed (e.g. noise and efficiency)

Breakdown voltage: typ. ± 0.15

FBK IPCEI Roadmap for 3D-integrated SPADs & SiPMs

- □ 3D integrated SPADs and SiPMs:
 - better sensitivity
 - more functionality per pixel
 - each tier can be independently optimized using dedicated processes

3D Integration at FBK

Front Side Illumination with TSVs: for NUV/VUV-sensitive detector

Back Side Illumination: for NIR-sensitive detector

3D Integration at FBK

- Example of Back Side illumination for Visible/NIR SiPMs
 - Wafer bonding
 - Wafer thinning (down to epi layer)
 - Surface passivation (new ARC)

■ Metal reflector can be used → increasing the effective absorption length of NIR photons.

Future NIR-HD tech. developments: charge-drift engineered SPADs

- □ Back side illuminated
 - With metal mirror → double effective absorption length.

□ With microlens

- Shaping light spot inside active volume
- □ Charge-drift paths engineering
 - Small active area, but with big collection volume!
- Bump bonding to read-out chip or discrete electronics

NIR-sensitive single-photon devices (SiPM and SPADs in custom technologies), for industrial and automotive LIDAR applications

Fabio Acerbi, G. Paternoster, A. Mazzi, A. Gola, L. Ferrario

Thank you

