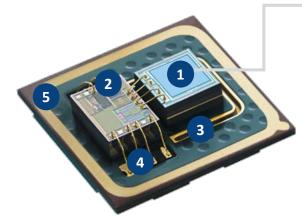
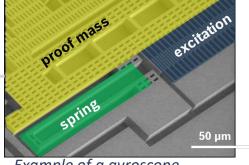
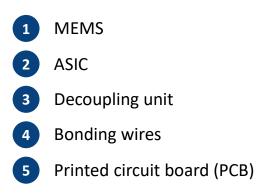


Trends and future challenges in designing and simulating high performance MEMS

Dr. Mirko Hofmann Robert Bosch GmbH

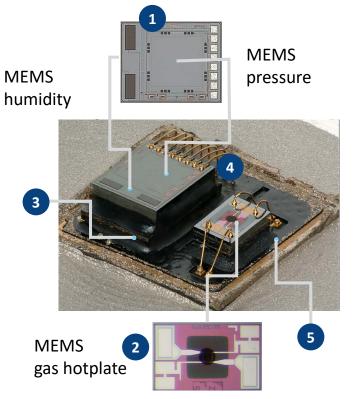

- What are MEMS?
- Which applications and future trends are pushing for performance?
- What are the resulting challenges in design and simulation?
- Conclusion

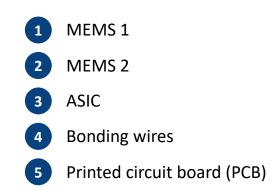



What are MEMS?

- ELECTRONICS PACKAGING SOCIETY
- Micro-Electro-Mechanical-Systems are the senses of the artificial world
 - Typical setup of an inertial sensor (accelerometer / gyroscope)

Example of a gyroscope





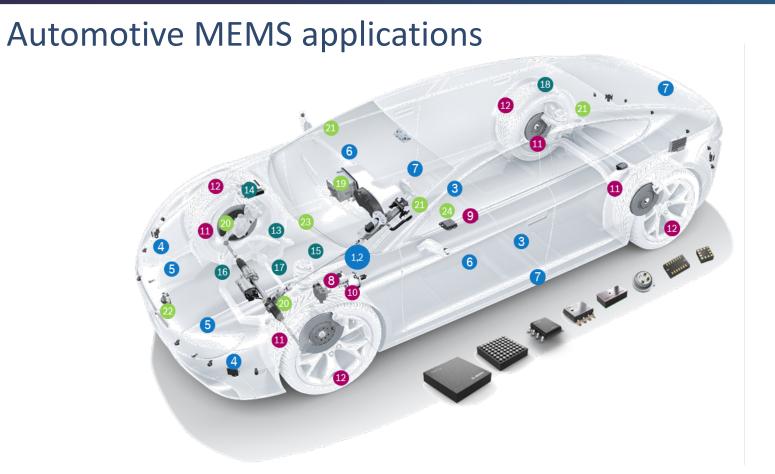
- Micro-Electro-Mechanical-Systems are the senses of the artificial world
 - Sensor to detect gases and air quality (e.g. BME680)

What are MEMS?

- Micro-Electro-Mechanical-Systems in addition allow the artificial world to interact with the environment
 - Inkjets for printers
 - Scanning Micro mirrors
 - DLPs

Inkjet Printer

DLP micro mirror array

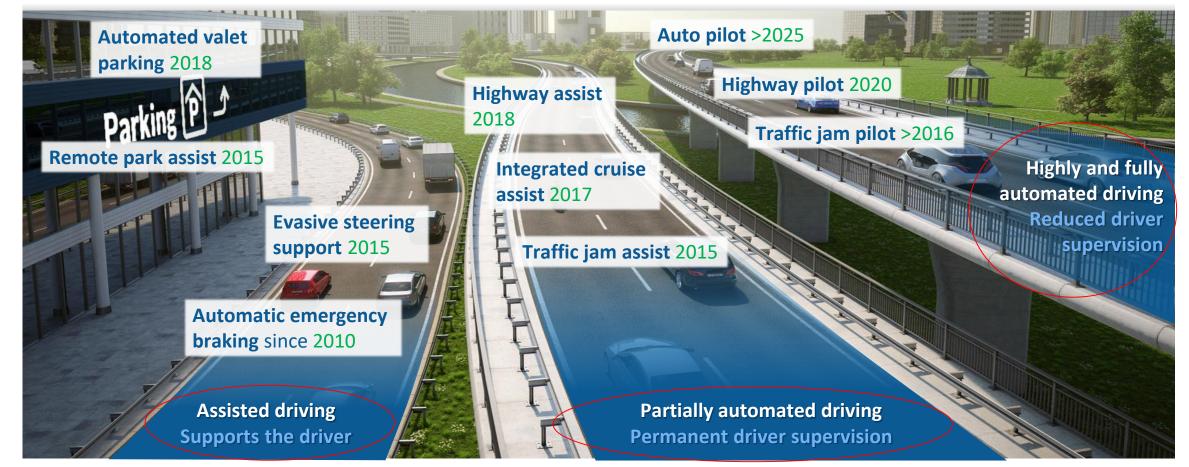


Smart glasses with μ -mirror based projection

MEMS are the key technology to connect the artificial world with its surroundings

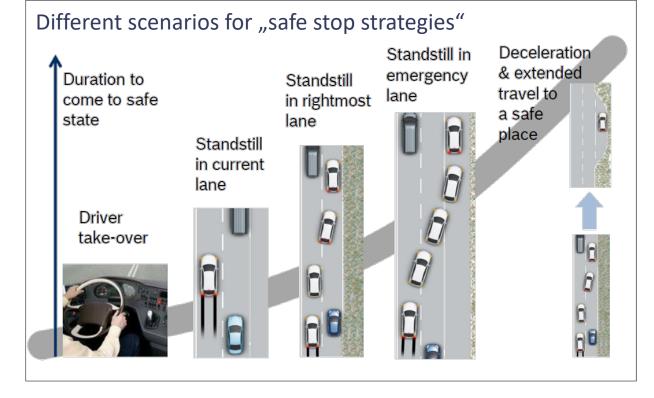
Passive Safety High G acceleration sensor for AB-ECU and eCall Rollover sensor for Airbag ECU 2 Occupant weight senor or pressure sensor PTS – Pedestrian tube sensor 4 UFS - Upfrontsensor PPS - Peripheral pressure sensor 6 PAS - Peripheral acceleration sensor Active Safety Inertial sensor für ESP, RSC, RoSe 8 MM – Sensor cluster for ESP (accel + gyro) 9 High pressure sensor for ESP 10 Low G acceleration sensor for active suspension 11 12 TPMS-Tire pressure monitoring system Power Train MAP – Manifold air pressure 13 BAP – Barometricair pressure 14 15 Medium Pressure for transmission Mass flow sensor 16 17 High pressure sensor for fuel injection Tank pressure sensor 18 **Comfort Functions** Inertial sensor for navigation 19 20 Motor damping/noise cancellation Microphone 21 22 Night vision Gas / air quality 23 24 Alarm

MEMS are widely used in modern cars for various functions They improve our mobility – safety, comfort and economy

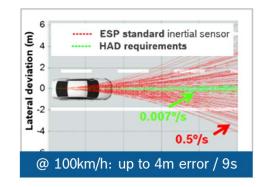


ECTRONICS EUROSIME

Automated driving – a revolution coming step by step



21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems July 6 – July 28, 2020


Automated driving – Increasing system complexity

Beside a strong increase of demand on visual detection systems...

... the requirements on classical MEMS sensors e.g. gyroscopes is increasing

The trend of highly automated driving (HAD) is leading to a tremendous performance push in classical inertial sensors such as gyroscopes and acceleration sensors

CE Application: Smartphone

2015 < 18 Sensors

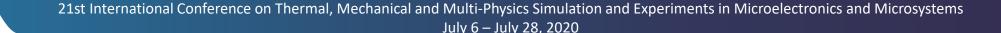
Sensors open up new degrees of freedom for innovative features and APPs

Consumer applications and trends

Virtual and augmented reality devices require precise motion tracking to avoid "cyber thickness" and allow acceptable user experience

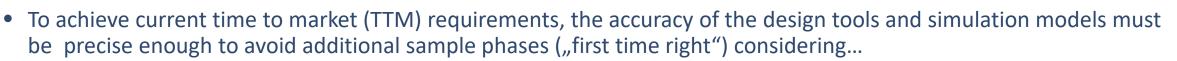
→ Low offset failures
→ Low sensitivity failures
→ High bandwidth

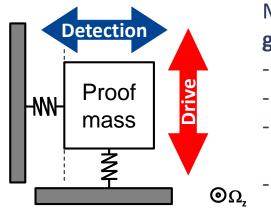
Fitness tracker or body networks require ultra sensitive signal acquisitions to acquire necessary information (e.g. push up routines etc.)



 \rightarrow High signal to noise ratio

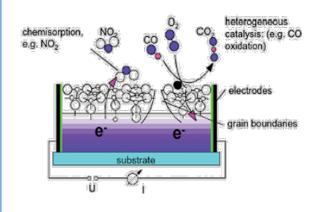
- \rightarrow Low power consumption
- \rightarrow Shock robust designs


Various consumer applications pushing for higher accuracy and performance at lower current consumption.



IPCE

Key Topics (1/3)



• Specific transducer principles (multi-physics)

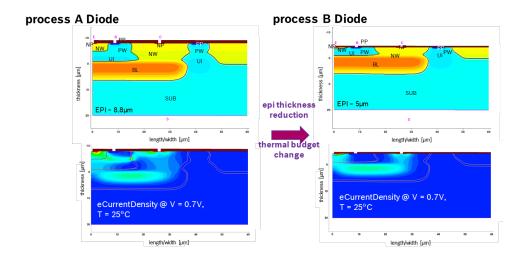
Micro mechanics of a **gyroscope** considering

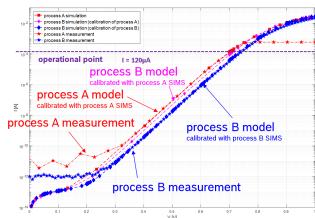
- Electrostatic non linearity
- Mechanical non linearity
- Process tolerances and distributions
- etc.

Electrochemical reaction of a gas sensor considering

CTRONICS EUROSIME

- Surface chemistry
- Ion and molecule movements and interactions
- etc.


A deep understanding of the dedicated transducer principle with all possible side effects and relevant cross sensitivities must be known and considered in the design and the simulation model

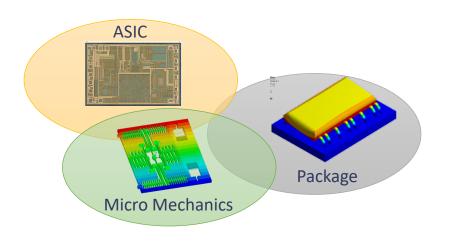

Key Topics (2/3)

- To achieve current time to market (TTM) requirements, the accuracy of the design tools and simulation models must be precise enough to avoid additional sample phases (", first time right") considering...
 - Process influences (process- & device simulation)

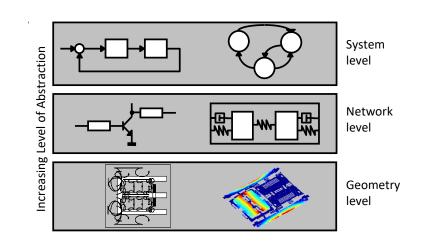
Process and device simulation of a **diode** considering

- Dopant
- Implant energy
- Process time
- Annealing steps
- etc.

All relevant sensor influences and deviations must be considered to guarantee a robust MEMS design for series production High performance can only be achieved with a deep understanding of even tiny process influences



ECTRONICS EUTOSIME


Key Topics

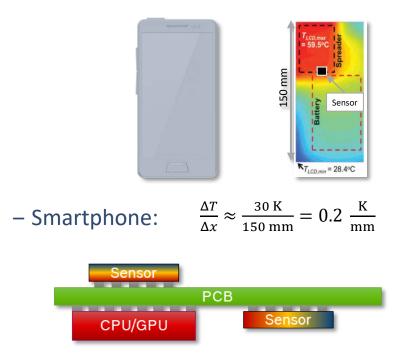
- To achieve current time to market (TTM) requirements, the accuracy of the design tools and simulation models must be precise enough to avoid additional sample phases (", first time right") considering...
 - Complex interaction of different domains (System Simulation)

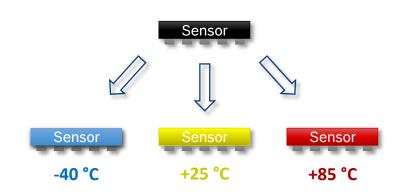
Complete **system model** considering

- Mechanical stress paths
- Parasites of MEMS
- Frontend (ASIC)
- Signal processing
- etc.

Achieving a reliable system model on a suitable abstraction level considering all relevant domain interactions is the key factor of success

ECTRONICS EUTOSIME


Example – Radiometric effects in accelerometers


Homogeneous Temperature

- Intensively investigated^{*1}
- Sensor characteristic dependent on CTE-mismatch
- Temperature trimming of sensor for compensation possible

Temperature Gradient

 High integration density induces temp. gradients within the sensor^{*2}

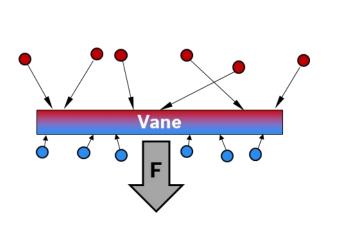
Invented for life

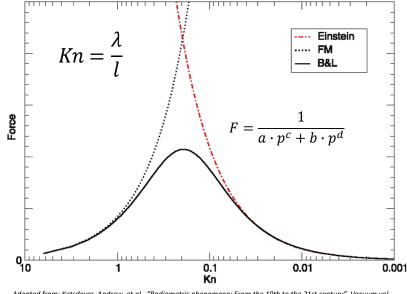
*1 N. Yazdi, F. Ayazi, K. Najafi, Micromachined inertial sensors, Proceedings of the IEEE 86 (1998) 1640-1659.
 *2 V. Chiriac, S. Molloy, J. Anderson, K. Goodson, A Figure of Merit for Smart Phone Thermal Management, Electronics COOLING (2015).

21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems

July 6 – July 28, 2020

Example – Radiometric effects in accelerometers


Published 2017 by Dr. Cristian Nagel

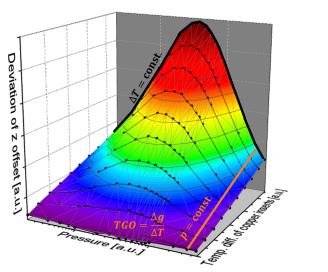

Temperature difference between both sides of single radiometer vanes

- Hotter gas molecules have higher momentum than cold gas molecules
- Net force:
 - Direction: from hot to cold
 - Shows bell shaped function
 - Dependent on gas species

μ-mechanical teeter totter of a z-channel accelerometer

Adapted from: Ketsdever, Andrew, et al., "Radiometric phenomena: From the 19th to the 21st century", Vacuum vol. 86, pp. 1644-1662, 2012.

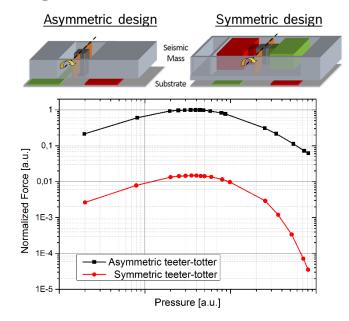
The radiometric induced force can tilt a teeter totter MEMS structure in an accelerometer resulting in an artificial output signal: TGO (Temperature Gradient Offset)



Example – Radiometric effects in accelerometers

Published 2017 by Dr. Cristian Nagel

Influence factors (design parameters) for TGO:


Cavern pressure:

Lucio International Action of the second sec

Gas type:

Design of teeter totter:

Radiometric effect cannot be simulated using standard CFD (Fluid Dynamics) approaches. Simulations based on MD (Molecular Dynamics) cannot describe structures of several 100µm!

 $\Delta T = \text{const.}$

C. Nagel, T. Zoller, F. Ante, et al., Radiometric effects in MEMS accelerometers, 2017 IEEE SENSORS, 2017

Pressure [a.u.]

- The markets and new use cases are pushing towards higher performance in MEMS at lower costs and current consumption
- To achieve the required accuracies new phenomena and physical effects must be taken into account
- The requirements on the simulation models increases parallel to the increase of product performance and accuracy
- To comply with the increasing demands on simulations and model accuracy new strategies towards "enhanced ROM" and "HPC-based" simulations must be developed

Thank you

ECO

C

Dr. Mirko Hofmann Director of MEMS Design House Robert Bosch GmbH

o___

Ô