

Reliability Requirements of Advanced Packaging in the Era of Electrified, Automated and Connected Driving

Przemyslaw Gromala Robert Bosch GmbH Automotive Electronics

PLUTO S, FKZ: 16IPCEI626

Agenda

- Motivation
- Role of advanced packaging in automotive
- Challenges
 - Warpage
 - Reliability
 - Prognostics and health management
- Conclusions

Motivation

Connectivity

Automation

Sharing

Electrification

Study of traffic accidents

Source: TechSearch International

New components (e.g. SiP, GPUs)

New use case conditions

New services

New materials

Advanced packaging...

...pave the way to highly automated driving

Lidar

Radar

Camera

High performance computers

Advanced packaging... ...examples

Advanced packaging...

... what does it mean harsh environment

- Extremely harsh and demanding environment (TCU)
 - Extreme ambient temperatures (-40 °C to +60°C ...+140°C under normal operating conditions)
 - Abrupt temperature changes
 - Exposure to fluids (oil, fuel, water, salt water)
 - Effects of moisture
 - Mechanical stresses (e.g. engine or transmission vibration)
- Other ECUs
 - Exposure to sunlight (UV)
 - High currents (self-heating)

Warpage...

...still is a challenge

- Packages subjected to the thermal load results in deviation from planar flatness.
- Warpage is caused by
 - Different coefficient of thermal expansion
 - Temperature and time dependency
 - Process conditions
 - Aging of materials

Robust design of advanced packaging... Simulation driven design

Virtual pre-qualification as a design method

Virtual DoE

ELECTRONICS PACKAGING SOCIETY

... means of reduction of warpage through correct BOM

Understand the effect of the molding compound properties on the stress in molded control unit

- Input parameters:
 - Coefficient of thermal expansion below and above glass transition temperature
 - Glass transition temperature
 - Chemical shrinkage
 - Modulus of elasticity
- Design of experiment
- Regression analysis
- Proposal for material properties for specific application

Qualitative reliability prognosis of the thermo-mechanical behavior

How to quantitative predict warpage ... material characterization and modeling

- Detailed characterization is a must
 - DMA describes elastic properties
 - TMA describes thermal expansion
- For quantitative prediction is still one parameter required:
 - Curing shrinkage
- Curing shrinkage happens during polymerization process of epoxy based thermosets
- Curing shrinkage causes:
 - volumetric shrinkage → change of deformation
 - Modulus of elasticity increases with time → stresses

How can we trust simulation ... Validation

W. Beveridge: "no one believes an hypothesis except its originator but everyone believes an experiment except the experimenter"

- Numerical methods accelerate development cycle of the semiconductor products
- The accuracy depends on inputs
- Numerical models must be validated experimentally

Component / board / system level interactions ... what challenges we can face

Multi Level Interactions

- Thermal mechanical Chip to Package Interaction (CPI)
 - ELK and bump failures
- Electrical CPI (e-CPI)
 - FinFET performance shift induced circuit performance drift
- Board level stress interaction with package and chip
 - Build-up substrate failure
 - Bump and Chip level failures
- System level
 - Influence of housing
 - Influence of mounting position

Chip package interaction

... how we can detect degradation of the IC package

Indirect detectors ("non-invasive")

- Mission profile tracking
- Stand alone aging monitors

Direct failure detectors ("invasive")

- Verify current consumption
- Monitor output signals of the structure/block

Event logging detectors

- ESD-Event loggers
- Max temperature/voltage/current-detectors
- Load dump counter (e.g. 200ms > V_{MAX})

Technology failure detectors

- Seal ring integrity, Pad/IMD-crack detectors
- Corrosion detectors, delamination detectors

Chip package interaction What is needed to implement resilient system

- 1. Sensors and detectors
 - Standardized IP (+ AD?)
 - Application-specific sensors

- 2. Resilience core and communication interface
- 3. Optional: integrated alternate operation modes

Source: F. Dietz

Alternate mode configuration

Next generation of reliability... ... hybrid PHM

Next generation of reliability...

ML used to understand relation between inputs and outputs

Next generation of reliability...

... how we used ML based to predict delamination

Stress sensor

TQFP on board

Accelerated tests Investigated failure mode

Preprocessing of the data

Stress results

Application of ML

In-situ lifetime prediction

A. Prisacaru et al, EuroSimE 2019

Advanced packaging... Conclusions

- Advanced packaging is one of the technology driver of automotive electronics
- Simulation driven design is the tool to accelerate development process
- Components / board / system level reliability is crucial during design and qualification phase
- Next generation of reliability will require implementation of prognostics and health management on component (IC packaging) and system (ECU) level

