

IPCF

FOUNDR

"Thermal-electric modelling of thermoelectric and electrocaloric on-chip cooling devices"

Authors: <u>C. Schwinge¹</u>, S. Kolodinski², M. Wiatr², W. Weinreich¹, M. Wagner-Reetz¹

¹Fraunhofer IPMS CNT, Königsbrücker Str. 178, 01099 Dresden, Germany ²GLOBALFOUNDRIES Management Services LLC & Co.KG, Wilschdorfer Landstraße 101, 01109 Dresden, Germany

New BEOL-functionality: Temperature Sensing & Manipulation

<u>Challenge</u>: high temperatures adversely affect IC reliability & degrade system performance <u>Aim</u>: high reliability & efficient regulatory cycles through **Temperature Sensing & Manipulation**

- Development of integration concepts & evaluation of CMOS-compatible materials
- Investigation of pyroelectricity & thermoelectricity concepts as well as their inverse effects
- Evaluation of processes, test structures and characterization methods for potential material & concepts

GLOBAL FOUNDRIES

On-Chip Cooling: More Power vs. Waste Heat

Downscaling of CPU \rightarrow high power density \rightarrow Hot Spots

Cooling areas of 1 mm²? \rightarrow General cooling technologies

Thermoelectric solution?

 \rightarrow active cooling, no moving parts, high reliability, small

💹 Fraunhofer IPMS

Thermoelectric Basic Principle

Peltier-effect

- Charge carriers transport energy/heat
- Material Interfaces: Heat absorption or emission because of different energy level

\Rightarrow µm-scaled Device

G. Li et al., Nature Electronics, 1 (2018) 555-561.

 \mapsto Bi₂Te₃ \rightarrow not CMOS-compatible

Diversity of Parameters

- Materials (electrode, insulator, <u>TE-material</u>)
- <u>Ambient T</u> of T_{cold} & T_{hot}
- Applied current density
- Direction of T-gradient
- Stages
- Dimensions
- Contact resistance

Material data for simulation

- Experimental data of Boron- & Phosphorous-doped poly-Si
- Comsol material databank used for SiO₂, Si & Cu
- Efficiency of thermoelectric materials:

IPMS

• Vertical **△**T-Gradient

Vertical: COMSOL-Simulation

Could a lateral temperature distribution be better?

Fraunhofer

Thermoelectric: Device Geometry & Physics

Lateral: Parameter Variation

21st International Conference on Thermal, Mechanical & Multi-Physics Simulation & Experiments in Microelectronics & Microsystems 6 – 28 July 2020

Lateral: Number of Stages

🗾 Fraunhofer

IPMS

 \implies multistage-TEC has no significant impact on ΔT

Thermoelectric: state of the art

• Heusler compound $Fe_2V_{0.8}W_{0.2}AI \rightarrow best reported zT \approx 6$

J₁₂

Lateral: Passive vs. Combination

23

Passive cooling: Cu heatspreader instead of TEC

Fraunhofer

IPMS

Cu-heatspreader has an higher impact on ΔT than TEC

Combination: Cu-heatspreader & TEC

Lateral: Pyramidal Structure

24

Fraunhofer

21st International Conference on Thermal, Mechanical & Multi-Physics Simulation & Experiments in Microelectronics & Microsystems 6 – 28 July 2020

Lateral: Pyramidal Structure

 $Max \Delta T_{TEC} = 5.125 K$

🗾 Fraunhofer

IPMS

 ΔT_{TEC} = 352.187 -346.629 = 5.558K ΔT_{TEC} = 348.338 - 342.921 = 5.417K → pyramidal-TEC has <u>significant</u> impact on ΔT

Conclusion

6

- Lateral TECs \rightarrow smaller influence than vertical TEC
- Lateral: $Fe_2V_{0.8}W_{0.2}AI$ has higher impact than poly-Si
- Passive cooling shows higher cooling effect than active & passive combination
- Pyramidal structure with poly-Si reach highest ΔT_{TEC}
- ➡ further investigations of pyramidal structured TECs

Thank you for your attention!

Questions?: caroline.schwinge@ipms.fraunhofer.de

This work is funded by the *German BMWI* (Bundesministerium für Wirtschaft und Energie) and by the *Freistaat Saxony* in the frame of the *Important Project of Common European Interest* (IPCEI).

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Diese Maßnahme wird mitfinanziert mit Steuermitteln auf Grundlage des vom Sächsischen Landtag beschlossenen Haushaltes.

